Solution 8

Supplementary Problems

1. Let $F=\left(F_{1}, \cdots, F_{n}\right)$ be a smooth vector field in an open region in \mathbb{R}^{n}. Show that if it is conservative, then the necessary conditions (Component Test) hold

$$
\frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial F_{j}}{\partial x_{i}}, \quad \forall i, j
$$

Solution. Let $F=\nabla \Phi$. Then

$$
\frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial}{\partial x_{j}} \frac{\partial \Phi}{\partial x_{i}}
$$

and

$$
\frac{\partial F_{j}}{\partial x_{i}}=\frac{\partial}{\partial x_{i}} \frac{\partial \Phi}{\partial x_{j}}
$$

so they are equal. When $n=3$, this reduces to the usual compatibility conditions (or necessary conditions, or component test):

$$
M_{z}=P_{x}, \quad M_{y}=N_{x}, \quad N_{z}=P_{y}
$$

2. Let \mathbf{F} be a smooth vector field in the entire space \mathbb{R}^{n}. Show that

$$
\Phi(x, y, z)=\int_{0}^{1} \mathbf{F}(t x, t y, t z) \cdot(x \mathbf{i}+y \mathbf{j}+z \mathbf{k}) d t
$$

defines a potential function for \mathbf{F} provided it passes the component test.
Solution. In a general dimension, the component test becomes

$$
\frac{\partial F_{i}}{\partial x_{j}}=\frac{\partial F_{j}}{\partial x_{i}}
$$

for different $i, j=1,2, \cdots, n$. With the above formula for Φ,

$$
\begin{aligned}
\frac{\partial \Phi}{\partial x_{i}} & =\int_{0}^{1}\left[\frac{\partial F_{1}}{\partial x_{i}}(t \mathbf{x}) t x_{1}+\frac{\partial F_{2}}{\partial x_{i}}(t \mathbf{x}) t x_{2}+\cdots+\frac{\partial F_{n}}{\partial x_{i}}(t \mathbf{x}) t x_{n}+F_{i}(t \mathbf{x})\right] d t \\
& =\int_{0}^{1}\left[\frac{\partial F_{i}}{\partial x_{1}}(t \mathbf{x}) t x_{1}+\frac{\partial F_{i}}{\partial x_{2}}(t \mathbf{x}) t x_{2}+\cdots+\frac{\partial F_{i}}{\partial x_{n}}(t \mathbf{x}) t x_{n}+F_{i}(t \mathbf{x})\right] d t \\
& =\int_{0}^{1} \frac{d}{d t} t F_{i}(t \mathbf{x}) d t \\
& =\left.t F_{i}(t \mathbf{x})\right|_{0} ^{1} \\
& =F_{i}(\mathbf{x})
\end{aligned}
$$

Note. We presented in class a method of finding the potential function by successive integration. This formula provides another method, but I like the old approach better since you do not have to remember anything.
3. Let C be the oriented curve runs from the origin to $(2,0)$ along the cardioid $r=1+\cos \theta$ in the upper half plane. Find the work done of $\mathbf{F}=(\sin x y+x y \cos x y) \mathbf{i}+x^{2} \cos x y \mathbf{j}$ along C.

Solution 1. The vector field is conservative. In fact, by direct integration its potential is given by $\Phi(x, y)=x \sin x y$. Therefore,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\Phi((2,0))-\Phi((0,0))=0
$$

Solution 2. We verify

$$
M_{y}=2 x \cos s y-x^{2} y \sin x y=N_{x}
$$

As the vector field is defined in the whole plane, \mathbf{F} is conservative. (This follows from the previous problem or from Green's theorem, see next lecture.) The line integral from the origin to $(2,0)$ along the cardioid is equal to the origin to $(2,0)$ along the horizontal line segment $\mathbf{c}(t)=t \mathbf{i}, t \in[0,2]$. Therefore,

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2}(M(t, 0) \mathbf{i}+N(t, 0) \mathbf{j}) \cdot(t \mathbf{i}) d t=0
$$

Note. Here we take advantage of the conservative property of the vector field to avoid integration over the cardioid. In the second approach we avoid finding the potential, instead working on a simpler path.

